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Abstract

The human monochromosome hybrid cell panel in the Japanese Collection of Research Bioresources (JCRB)
consists of 23 mouse cell clones, each containing a different human chromosome (the Y chromosome is
not yet included). The panel is currently distributed by the Human Science Research Resources Bank (HSRRB)
in Osaka. In order to determine the state of the human chromosomes and to supply the information to
investigators, we characterized the cells by £uorescence in-situ hybridization (FISH) with corresponding human
chromosome-speci¢c painting probes, and, in part, by reverse FISHwith the hybrid total DNA hybridized onto
human metaphase spreads. Here, we report the frequency of intact human chromosomes maintained in each
hybrid and the retained subregions of corresponding human chromosomes with relative frequencies estimated
by £uorescent intensity. We used speci¢c painted patterns to classify each hybrid into tentative types with
their frequencies showing the nature of each hybrid and the state of rearrangements. This characterization
will provide valuable information to investigators using the panel.

Introduction

The human monochromosome hybrid cell panel was
established by Oshimura and his colleagues and
deposited in the Cell Bank of the JCRB (Japanese
Collection of Research Bioresources)/HSRRB
(Human Science Research Resources Bank). By

means of microcell-mediated chromosome transfer,
single chromosomes derived from normal human
cells were introduced into mouse A9 cells, except
for chromosome 9, which was introduced into
CHO cells. The hybrids containing transferred single
human chromosomes, which were tagged with a
dominant marker gene for resistance to neomycin,
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blasticidin, hygromycin, or histidinol, were selected
and cloned (Koi et al. 1989a, 1989b). The collection
of cell lines is registered as JCRB2201^2223 and each
human chromosome except Y is represented in one
of the lines (Table 1). Total genomic DNAs
extracted from those cells, which were frozen in
ampules and listed on the board of the JCRB Cell
Bank, are available through JCRB/HSRRB Gene
Bank hhttp://www.nih.go.jp/yoken/genebank/i.
Human^rodent somatic cell hybrids have been gen-
erally used for construction of genomic libraries,
assignment of genes, or isolation of DNA markers.
Most of them, however, consist of several hybrids
containing partial human chromosomes or more
complicated composites, except for NIGMS map-
ping panel 2 (Ledbetter et al. 1990, Warburton et
al. 1990, Ning et al. 1992, 1993, Drwinga et al. 1993,
Dubois & Naylor 1993, Leonard et al. 1997, 1998,
1999). In contrast, the panel presented here consists
of a set of hybrid cells with each single human

chromosome; only the Y chromosome is not yet
included. This will provide a valuable resource for
functional analyses of human chromosomes with
regard to speci¢c chromosomal or subchromosomal
regions. Indeed, utilization of the panel has already
led to information on many aspects of gene function,
including DNA repair, ageing, and tumor sup-
pression (Ejima et al. 1990, Kugoh et al. 1990,
Yamada et al. 1990, Tanaka et al. 1991, Kurimasa
et al. 1994, Katoh et al. 1995, Jongmans et al. 1996,
Matsuura et al. 1997, Kodama et al. 1998, Uzawa
et al. 1998, Cui et al. 1999). A remarkable advance
is the `trans-chromosomic mouse' project in which
Tomizuka and his colleagues have utilized A9
hybrids containing a human chromosome 2 (IgL
kappa), 14 (IgH), or 22 (IgL lambda) and have suc-
cessfully introduced these human chromosomes into
mouse embryonic stem cells via microcell-mediated
chromosome transfer (Tomizuka et al. 1997, 2000).
These mice stably express human-type immuno-

Table 1. Human monochromosome hybrid cell panel.

Cell no. Line Human
chromosome

Selection Origina Intact
chromosomes (%)b

Signals
(%)c

Rearranged
(%)d

JCRB2201 A9(Neo1) 1 G418 An 45.4 95.4 50.0
JCRB2202 A9(Neo2) 2 G418 An 90.8 93.9 3.1
JCRB2203 A9(Neo3) 3 G418 NTI-4 84.9 84.9 0
JCRB2204 A9(Neo4) 4 G418 MRC-5 100 100 0
JCRB2205 A9(Neo5) 5 G418 Mo 94.1 94.1 0
JCRB2206 A9(Neo6) 6 G418 An 98.1 98.1 0
JCRB2207 A9(Neo7) 7 G418 NTI-4 100 100 0
JCRB2208 A9(Neo8) 8 G418 Mo 100 100 0
JCRB2209 CHO(His9) 9 Histidinol Primary 0 100 100
JCRB2210 A9(Bsr10) 10 Blasticidin Primarye 32.4 97.1 64.7
JCRB2211 A9(Neo11) 11 G418 MRC-5 100 100 0
JCRB2212 A9(Neo12) 12 G418 NTI-4 0 100 100
JCRB2213 A9(Hygro13) 13 Hygromycin Primary 80.9 80.9 0
JCRB2214 A9(Hygro14) 14 Hygromycin Primary 96.1 96.1 0
JCRB2215 A9(Neo15) 15 G418 An 100 100 0
JCRB2216 A9(Neo16) 16 G418 Primary 100 100 0
JCRB2217 A9(Neo17) 17 G418 Primary 77.8 87.0 9.2
JCRB2218 A9(Neo18) 18 G418 Mo 100 100 0
JCRB2219 A9(Neo19) 19 G418 MRC-5 100 100 0
JCRB2220 A9(Neo20) 20 G418 Mo 68.5 93.2 24.7
JCRB2221 A9(Hygro21) 21 Hygromycin Primary 96.0 100 4.0
JCRB2222 A9(Hygro22) 22 Hygromycin Primary 0 100 100
JCRB2223 A9(BsrX) X Blasticidin Primarye 16.7 100 83.3

aCells from which human chromosome was derived.
bFrequency of intact chromosomes detected by whole chromosome painting (WCP) probes.
c Frequency of any signals detected by respective WCP probes.
d Frequency of chromosome rearrangement (c minus b).
e These two hybrids contain a chromosome derived from ¢broblasts of the same Japanese male.
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globulins in a proper tissue-speci¢c manner. This
novel procedure is expected to have therapeutic
applications.

In the present study, we report the results of a
detailed analysis of the JCRB panel aimed at an
extensive characterization as a process of quality
control identifying the human chromosomal regions
by £uorescence in situ hybridization (FISH) with
corresponding human chromosome-speci¢c painting
probes, which are called whole chromosome paint-
ing (WCP) probes, and in part combined by reverse
FISH (revish) with total DNA of the hybrid onto
normal human metaphase spreads. We believe these
results provide useful information for investigators
to study further functional genomics.

Materials and methods

Cells and chromosome preparation

Cells registered as JCRB2201^2223 in the JCRBCell
Bank were used (detailed information of each cell
line is referred to in the web site
hhttp://cellbank.nihs.go.jp/i). Metaphase spreads
of each cell line were obtained by the standard
procedure. Brie£y, cells were cultured in medium
containing 0.02^0.04 mg/ml colcemide (Gibco BRL)
for 2^4 h, exposed to hypotonic solution (0.2%
trisodium citrate� 0.06 mol/L potassium chloride)
for 20 min, and ¢xed with Carnoy's ¢xative. Cell
suspension was dropped onto glass slides, air-dried,
and stored in a freezer until use.

Fluorescence in situ hybridization (FISH) and
reverse FISH (revish)

SpectrumGreen-labeled WCP probes speci¢c for
human chromosomes 1, 5, 9 and X were obtained
from Vysis Inc., and Cy3-labeled WCP probes
speci¢c for all other human chromosomes were
obtained from Amersham, Co. Ltd. All probes were
used according to the manufacturers' instructions.
Approximately 50 metaphases per probe were
analyzed. Revish procedure was basically the same
as that previously described (Tanabe et al. 1995).
In brief, total genomic DNAs of cell lines were
obtained by the GenTle solution kit (Takara),
labeled with biotin-16-dUTP (Boerhinger) by nick
translation, and hybridized onto the normal human

metaphase spreads with a 20-fold excess of human
CotI DNA (Gibco BRL). After hybridization, the
biotinylated DNA probe was visualized by
FITC-conjugated avidin and biotinylated
anti-avidin antibody combination system (Vector).
The slides were counterstained with DAPI
(0.05 mg/ml) in antifade medium.

Fluorescence microscopy and imaging

Fluorescent images were observed by a Zeiss
Axiophot2 epi£uorescence microscope equipped
with an Apochromato �63 objective lens and the
¢lter set for DAPI, FITC, and TRITC, captured
by a Photometrics PXL cooled CCD camera, and
colorized by theMultiFluor Electronic Photography
system (Biological Detection, Inc.). In revish, £uor-
escent intensities along with the painted chromo-
somes were analyzed by Optimas 5.1 and
graphically presented. The chromosomal deleted
regions were estimated by the data of relative £uor-
escent intensities from approximately 10 metaphases
per probe.

Results

First, metaphases were examined by means of
QFH-banding analysis. In some hybrids the human
chromosome was cytogenetically normal, but in
others there were remarkable rearrangements,
including interstitial deletions and/or translocations
between human and host chromosomes, although
the rearrangement frequencies were relatively low
(Nakagawa et al. 1996). To characterize them more
precisely, we used WCP probes to determine the fre-
quency of cells that retained the human
chromosome. As shown in Table 1, a relatively high
percentage of rearrangements was found in the
hybrids containing human chromosomes 1, 9, 10,
12, 20, 22, or X. Even though, in highly rearranged
chromosomes, it is dif¢cult to determine which
human chromosomal regions are retained by
WCP analysis, nevertheless, the revish technique
enables such determination with precision, and their
relative frequency as well. We have assigned tenta-
tive types corresponding to different patterns of
WCP signals in each hybrid and our efforts to incor-
porate information from detailed characterization
are described in Table 2, and photomicrographs
are shown in Figures 1 and 2.
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Figure 1. Representative metaphase images in each A9 cell hybrid after FISH with corresponding WCP probes and their tentative types.
Insets show the DAPI image of the painted chromosomes. Asterisks show the rearranged chromosome of interest revealed byWCP signals.
(j) shows a DAPI-stained image of the same metaphase as in (i).
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Figure 2. Summary of revish results of (a) CHO(His9), (b) A9(Neo12), and (c) A9(Neo20). Normal human metaphase images are shown
after FISHwith total genomicDNAs obtained from each hybrid. Insets show the painted chromosomes with their DAPI image. Fluorescent
intensities along with the painted chromosomes are graphically presented by Optimas 5.1, and deleted subregions are shown between the
bars.
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Discussion

The majority of the hybrids contained intact human
chromosomes at relatively high frequencies. Those
with human chromosomes 1, 9, 10, 12, 20, 22,
and X, however, contained a high frequency of
rearrangements. Therefore, new clones should be
isolated by recloning procedures, or different
hybrids should be prepared by microcell-mediated
chromosome transfer. The observed instabilities
may be due to relationships between the host
genome and endogeneous factors on the introduced
human chromosomes, but it is also possible that
the telomere lengths of the human chromosomes
are shorter than those of the mouse chromosomes,
resulting in the earlier unstable structures which
occurred on the human chromosomes, although
those instabilities are constrained under the genetic
regulation of telomerase in multiple pathways
(Kipling & Cooke 1990, Oshimura et al. 1996).
Moreover, speci¢c genes on the introduced human
chromosomes could have affected the chromosomal
stability. For example, CDKN2A (cyclin-
dependent kinase inhibitor 2A) at 9p21 mediates
the rapid growth-arrest response associated with
human chromosome 9 (England et al. 1996). When
chromosome 9 is present in proliferating clones
of A9 hybrids, it either carries microdeletions
involving the CDKN2A region or the region is
epigenetically silenced (the former is twice as
frequent). Thus, A9 hybrids with human chromo-
some 9 are prone to induced chromosomal deletion
involving 9p21 regions leading to high rearrange-
ments, rather than the epigenetic silencing of
CDKN2A (England et al. 1996). As for chromo-
some 12, isochromosome 12p is commonly detected
in ¢broblasts of Pallister^Killian syndrome patients
(Raffel et al. 1986, Ohashi et al. 1993, Dutly et
al. 1998, Struthers et al. 1999) and an A9 hybrid
containing i(12p) as a sole human chromosome
was constructed a decade ago (Zhang et al. 1989).
A9(Neo12) of the present panel with its high fre-
quency of i(12p) will provide a suitable model for
the study of the way isochromosomes form and
operate.

We believe that results characterizing the present
panel molecular cytogenetically are prerequisite
for any further scienti¢c work, in particular for
the purpose of functional genomics or for investi-
gation of fundamental cellular mechanisms, as is

coming in the post-human genome era. Actually,
several studies have already been reported in
telomerase activity and cellular sensescence
(Horikawa et al. 1998, Tanaka et al. 1998, 1999,
Uejima et al. 1998, Kugoh et al. 2000), gene
expression (Suzuki et al. 1997, Mitsuya et al. 1999),
and genomic imprinting (Meguro et al. 1997,
Mitsuya et al. 1998, Kugoh et al. 1999, Lee et al.
1999). In addition, via microcell-mediated chromo-
some transfer from A9 hybrids to chicken DT40
cells, which have a high homologous recombination
pro¢ciency, chromosome modi¢cation by
telomere-directed truncation of human chromo-
somes transferred back to A9 hybrids has now
become a realistic technique (Koi et al. 1997,
Kuroiwa et al. 1998, Mills et al. 1999).

The human chromosomes in all the hybrids
discussed here tended to have internal
rearrangements or translocations with the host
chromosomes. Accordingly, investigators using the
hybrids have to pay attention to this property
and avoid inappropriate culture conditions.Whether
the JCRB hybrids contain the intact human chromo-
some with high frequency or not, it is important to
characterize the resource as extensively as possible
and to provide the information to investigators.
Thus, we have made our data available at the
web site hhttp://cellbank.nihs.go.jp/i and we hope
it will be of value.

Note: Correspondence requesting panel cell lines
should be addressed to: HSRRB in Osaka Branch
of National Institute of Health Sciences, 1-1-43,
Hoen-Zaka, Chuo-ku, Osaka 540-0006, Japan; c/o
Dr. Toho Yoshida; Tel: � 81-6-945-2869; Fax:
� 81-6-945-2872; E-mail: hsrrb@nihs.go.jp;
URL:hhttp://cellbank.nihs.go.jp/i.
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